Chem. Ber. 115, 795 – 797 (1982)

Redoxverhalten von Tetraaza[4]radialenen

Konrad Hesse^a, Siegfried Hünig^{*a}, Hans Jürgen Bestmann^b, Günter Schmid^b, Eberhard Wilhelm^b, Gunther Seitz^c, Rudolf Matusch^c und Klaus Mann^c

Institut für Organische Chemie der Universität Würzburg^a, Am Hubland, D-8700 Würzburg,

Institut für Organische Chemie der Universität Erlangen-Nürnberg^b, Henkestr. 42, D-8520 Erlangen, und

Institut für Pharmazeutische Chemie der Universität Marburg^c, Marbacher Weg 6, D-3550 Marburg (Lahn)

Eingegangen am 3. Juli 1981

Redox Properties of Tetraaza[4]radialenes

The electrochemical reversible two step reduction of the related compounds 1_{OX} ($K_{SEM} = 2.0 \cdot 10^{15}$), 2_{OX} ($K_{SEM} = 8.9 \cdot 10^{11}$), and $3_{OX/RED}$ ($K_{SEM} = 7.6 \cdot 10^{12}$) is described and discussed. $3_{OX/RED}$ may also be oxidized in two steps ($K_{SEM} = 1.7 \cdot 10^4$); thus it reacts as a four step redox system.

Während Cyclobutatetron bisher nur als Tetrahydrat isoliert werden konnte¹⁾, kennt man inzwischen Cyclobutanderivate mit vier $-N = C \le -B$ indungen, die sich als Abkömmlinge des Tetraaza[4]radialens betrachten lassen. Es handelt sich um die starre Verbindung 1_{0X}^{2} , Tetrakis-(phenylimino)cyclobutan $(2_{0X})^{3}$ und mehrere Tetrahydrazone⁴⁾, von denen nur $3_{0X/RED}$ untersucht wurde.

Elektrochemisches Verhalten von 1_{OX}, 2_{OX} und 3_{OX/RED}⁵⁾

Wie früher schon gezeigt, läßt sich das luftstabile 1_{OX} in DMF glatt reversibel zweistufig bis zum Dianion $1_{RED^2 \odot}$ reduzieren. Wie die nach Gl. (1) definierte Semichinonbildungskonstante K_{SEM} zeigt, besitzt das System 1 mit dem ungewöhnlich großen $K_{SEM} = 2.0 \cdot 10^{15}$ ein thermody-

$$K_{\text{SEM}} = \frac{[\text{SEM}]^2}{[\text{RED}][\text{OX}]}$$
(1)

namisch außerordentlich stabiles Radikalanion $1_{SEM} \cdot \odot^{2}$.

Das verwandte, aber viel beweglichere System 2, bei dem zumindest im Kristall die 4 N-Atome nicht in der Vierringebene liegen³⁾, läßt sich ebenfalls zweistufig reduzieren. Vermutlich trägt dieser geometrische Unterschied zu dem um den Faktor $\approx 10^3$ kleineren K_{SEM} -Wert bei. Dieser ist mit $K_{\text{SEM}} = 8.9 \cdot 10^{11}$ immer noch so groß, daß im Gleichgewicht praktisch ausschließlich 2_{SEM} . vorliegt. Aus der Lage der Potentiale ist abzulesen, daß sich 2_{OX} viel leichter reduzieren läßt als 1_{OX} .

Auch chemisch erweist sich 2_{OX} als starkes Oxidationsmittel, das Hydrochinon und primäre Alkohole oxidiert und dabei in $2_{RED} \cdot 2H$ übergeht³). Dagegen wird $1_{RED} \cdot 2H$ bereits durch Luftsauerstoff oxidiert.

Im Gegensatz zu 1 und 2 existiert 3 sogar in fünf Oxidationsstufen, d. h. als ein vierstufiges Redoxsystem. Dabei nimmt die ungeladene Form, gekennzeichnet als $3_{OX/RED}$, anders als bei den

© Verlag Chemie GmbH, D-6940 Weinheim, 1982 0009 – 2940/82/0202 – 0795 \$ 02.50/0

zwei verwandten vierstufigen Redoxsystemen^{6,7)}, eine Mittelstellung ein: Bei sehr negativen Potentialen wird $3_{OX/RED}$ glatt reversibel zweistufig zu $3_{RED^2\Theta}$ reduziert, wobei K_{SEM} mit 7.6 · 10¹² den Wert für das System 2 sogar um rund eine Zehnerpotenz übertrifft.

Die neutrale Form von 3 stellt aber zugleich die reduzierte Stufe für ein zweistufiges Redoxsystem dar, das schließlich zu $3_{OX^{2\oplus}}$ führt. Obwohl Radikalkationen von Hydrazonen auch σ -Charakter besitzen können, dürfte es sich bei $3_{SEM^{-\oplus}}$ um ein π -Radikal handeln⁸⁾.

Wie in der gezeigten Grenzformel angedeutet, dürfte die Ausbildung von Diazenium-Strukturen⁹⁾ wesentlich zur Stabilisierung von $3_{OX^{2}\oplus}$ beitragen und zugleich die mangelnde Oxidierbarkeit der Systeme 1 und 2 erklären. K_{SEM} ist bei der Oxidation mit $1.7 \cdot 10^4$ um $\approx 10^8$ kleiner als bei der Reduktion. Ähnliche Differenzen wurden z. B. auch bei der Reduktion und Oxidation isoelektronischer Systeme vom *Weitz*-Typ beobachtet ¹⁰.

Wir danken dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen.

Experimenteller Teil

Apparaturen, Lösungsmittel usw. vgl. Lit.²⁾. Von dort wurden auch die Ergebnisse für das System 1 übernommen. Alle Messungen wurden mittels cyclischer Voltammetrie (CV), Gleichstrom(DC)- und Wechselstrom(AC)-Polarographie unter N₂ durchgeführt. Sämtliche Potentiale wurden an einer Pt-Elektrode gegen Ag/AgCl in Acetonitril gemessen. Leitsalz (n-C₄H₉)₄NBF₄

Chem. Ber. 115 (1982)

oder $(C_2H_5)_4NBF_4 5 \times 10^{-2} \text{ mol/l.}$ Depolarisator $\approx 5 \times 10^{-4} \text{ mol/l.}$ Die verschiedenen Auswertungen der Meßkurven (siehe Tab. 1) bestätigen die reversible Übertragung von jeweils einem Elektron.

Depolarisator (Solvens)	Methode	1. Pot. [V]	Auswer- tung (mV)	2. Pot. [V]	Auswer- tung (mV)
2 _{OX} (DMF)	CV (20-100 mV/s)	-0.21	62 ^{a)}	- 0.90	60 ^{a)}
	DC b)	-0.21	112 ^{c)}	-0.92	125 ^{c)}
	AC ^d)	-0.20	108 ^{e)}	-0.92	125 ^{e)}
$3_{OX/RED}$ (DMF)	CV (20 mV/s)	-1.29	59a)	-2.04	59a,f)
	DC	-1.29	107 c)	-2.05	113 c)
	AC	-1.28	92 e)	-2.04	105 ^{e)}
$3_{OX/RED}$ (CH ₃ CN)	CV (20 - 200 mV/s)	+ 0.95	59a)	+1.19	63 ^{a)}
	DC	+ 0.94	113c)	+1.19	113 c)
	AC ^d	+ 0.94	95e)	+1.20	96°)

Tab. 1. Elektrochemische Daten von 2 und 3, ermittelt durch Gleichstromvoltammetrie (DC), Wechselstromvoltammetrie (AC) und cyclische Voltammetrie (CV)

^{a)} Peakspitzenabstand. – ^{b)} + bas. Al₂O₃, Akt. Stufe I¹¹⁾. – ^{c)} Auswertung nach v. Stackelberg¹²⁾. – ^{d)} IR nicht voll kompensierbar. – ^{e)} Halbwertsbreite, bei voller Reversibilität und vollständiger IR-Kompensation gleich 90/n mV¹³⁾. – ^{f)} Bei 200 – 50 mV/s schwach gehemmter Ladungsdurchtritt.

- ¹⁾ S. Skujins, J. Delderfield und G. A. Webb, Tetrahedron 24, 4805 (1968); R. West, H. Y. Niu und M. Ito, J. Am. Chem. Soc. 85, 2584 (1963).
- ²⁾ S. Hünig und H. Pütter, Angew. Chem. 84, 481 (1972); Angew. Chem., Int. Ed. Engl. 11, 431 (1972); Angew. Chem. 85, 143 (1973); Angew. Chem., Int. Ed. Engl. 12, 149 (1973); Chem. Ber. 110, 2524, 2532 (1977).
- ³⁾ H. J. Bestmann, G. Schmid und E. Wilhelm, Angew. Chem. **92**, 134 (1980); Angew. Chem., Int. Ed. Engl. **19**, 136 (1980).
- 4) G. Seitz, R. Matusch und K. Mann, Chem.-Ztg. 101, 557 (1977).
- ⁵⁾ Die geladenen Formen der Systeme 1-3 sind jeweils nur in einer Grenzformel wiedergegeben.
- ⁶⁾ *M. Horner* und *S. Hünig*, Angew. Chem. **89**, 424 (1977); Angew. Chem., Int. Ed. Engl. **16**, 410 (1977).
- ⁷⁾ B. Hagenbruch, K. Hesse, S. Hünig und G. Klug, Liebigs Ann. Chem. 1981, 256.
- ⁸⁾ Vgl. A. Berndt, R. Bolze, R. Schneud und H. Woynar, Angew. Chem. 93, 400 (1981); Angew. Chem., Int. Ed. Engl. 20, 390 (1981).
- ⁹⁾ Vgl. hierzu Alkoxydiazenium-Salze, 1. Arbeit: S. Hünig, G. Büttner, J. Cramer, L. Geldern, H. Hansen und E. Lücke, Chem. Ber. 102, 2093 (1969); letzte Arbeit: S. Hünig, J. Cramer und H.-P. Hansen, J. Chem. Soc., Chem. Commun. 1974, 264; Triazenium-Salze: H. Hansen, S. Hünig und K. Kishi, Chem. Ber. 112, 445 (1979).
- ¹⁰⁾ Vgl. S. Hünig und H. Berneth, Fortschr. Chem. Forsch. 92, 1 (1980).
- ¹¹⁾ O. Hammerich und V. D. Parker, Electrochim. Acta 1973, 537; B. S. Jensen und V. D. Parker, J. Chem. Soc., Chem. Commun. 1974, 367.
- ¹²⁾ M. v. Stackelberg, Polarographische Arbeitsmethoden, S. 282, de Gruyter, Berlin 1950.
- ¹³⁾ E. R. Brown und R. F. Large, in A. Weissberger und B. W. Rossiter, Techniques of Chemistry, Vol. I., Part IIa, S. 444, Wiley-Interscience, New York 1971.

[249/81]

Chem. Ber. 115 (1982)